当前位置: > 如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC. (1)求点B的坐标; (2)点P从C点出发,沿线段CO以5个...
题目
如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC.

(1)求点B的坐标;
(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围).

提问时间:2021-12-08

答案
(1)如答图1,过点B作BN⊥OC,垂足为N
由题意知,OB=OC=10,BN=OA=8
∴ON=
OB2−BN2
=6,
∴B(6,8)
(2)如答图1,∵∠BON=∠POH,∠ONB=∠OHP=90°
∴△BON∽△POH,
BO
PO
=
ON
OH
=
BN
PH

∵PC=5t,
∴OP=10-5t,
∴OH=6-3t,PH=8-4t,
∴BH=OB-OH=10-(6-3t)=3t+4,
∴S=
1
2
(3t+4)(8-4t)=-6t2+4t+16(0≤t<2).
(1)过点B作BN⊥OC,则四边形ABNO是矩形,BN=AO=8,AB=ON,由勾股定理可求得NB的长;
(2)可证△BON∽△POH,有
BO
PO
=
ON
OH
=
BN
PH
,由题意知OP=10-5t,OH=6-3tPH=8-4t,BH=OB-OH=10-(6-3t)=3t+4,从而求得S的表达式,由于OC=10,故0≤t<2.

相似三角形的判定与性质;勾股定理.

本题主要考查了相似三角形的判定和性质,勾股定理、平面直角坐标系等知识点,解题的关键在于找到相似三角形,利用相似三角形的性质列出函数关系式.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.