题目
高数二,洛必达法则
洛必达法则是怎么推导出来的?洛必达凭什么,怎么得出的这个法则,你说是这样就是这样吗?依据是什么?还有为什么不是
1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f(x)/F(x)=A(或为无穷大),那么 x→a时 lim f'(x)/F'(x).=A
我觉得这样更好更直观,
说明函数比为某个数或无穷时,导函数之比同样(同样适用于x→∞)
当x→a时lim f(x)/F(x)=A(或为无穷大),那么 x→a时 lim f'(x)/F'(x).=A
同样适用于x→0
我这样说对吗?
高手主要帮我看看后面的问题,因为关于推导的过程,我稍微听说了一点,而后面的问题是我提出的新论点、说不定会引领时代的潮流
洛必达法则是怎么推导出来的?洛必达凭什么,怎么得出的这个法则,你说是这样就是这样吗?依据是什么?还有为什么不是
1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f(x)/F(x)=A(或为无穷大),那么 x→a时 lim f'(x)/F'(x).=A
我觉得这样更好更直观,
说明函数比为某个数或无穷时,导函数之比同样(同样适用于x→∞)
当x→a时lim f(x)/F(x)=A(或为无穷大),那么 x→a时 lim f'(x)/F'(x).=A
同样适用于x→0
我这样说对吗?
高手主要帮我看看后面的问题,因为关于推导的过程,我稍微听说了一点,而后面的问题是我提出的新论点、说不定会引领时代的潮流
提问时间:2021-12-07
答案
关于问题“当x→a时lim f(x)/F(x)=A(或为无穷大),那么x→a时lim f'(x)/F'(x)=A(或为无穷大),同样适用于x→0”,
如果说,同样,成立“当x→0时lim f(x)/F(x)=A(或为无穷大),那么x→0时lim f'(x)/F'(x)=A(或为无穷大)”,这句明显是对的;
如果说,同样,成立“当x→a时lim f(x)/F(x)=A(或为无穷大),那么x→0时lim f'(x)/F'(x)=A(或为无穷大)”,这句就是错的.
关于把结论写成“x→a时 lim f'(x)/F'(x)=A”的问题,如果要这样写,应该写成“x→a时 lim f'(x)/F'(x)=A(或为无穷大)”是对的.其实在这种写法中,暗含着:“函数比的极限为某个数或无穷时,导函数之比的极限同样”的意思,所以洛必达法则的结论也写成“x→a时 lim f'(x)/F'(x)=x→0时 lim f(x)/F(x)”.两种写法只是形式不同,本质是相同的,即函数比的极限为某个数或无穷时,导函数之比的极限同样”.
关于洛必达法则的推导依据,在大一高等数学课程中有.
如果说,同样,成立“当x→0时lim f(x)/F(x)=A(或为无穷大),那么x→0时lim f'(x)/F'(x)=A(或为无穷大)”,这句明显是对的;
如果说,同样,成立“当x→a时lim f(x)/F(x)=A(或为无穷大),那么x→0时lim f'(x)/F'(x)=A(或为无穷大)”,这句就是错的.
关于把结论写成“x→a时 lim f'(x)/F'(x)=A”的问题,如果要这样写,应该写成“x→a时 lim f'(x)/F'(x)=A(或为无穷大)”是对的.其实在这种写法中,暗含着:“函数比的极限为某个数或无穷时,导函数之比的极限同样”的意思,所以洛必达法则的结论也写成“x→a时 lim f'(x)/F'(x)=x→0时 lim f(x)/F(x)”.两种写法只是形式不同,本质是相同的,即函数比的极限为某个数或无穷时,导函数之比的极限同样”.
关于洛必达法则的推导依据,在大一高等数学课程中有.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1300除以()等于()……12 有几种填法
- 2地热的话 地表温度最高能达到多少啊?
- 3把下列文章翻译成英语
- 4如果有球,正方体,长方体,圆锥,圆柱,三棱形如何分类,并说理由
- 5中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、25
- 6一个圆锥体积比它等底等高的圆柱体积少48立方米,圆锥体积是_.
- 7w()st()rn 补全和中文意思
- 81.5mol二氧化氮与足量水反应,转移的电子数为什么为NA
- 9My parets work in the garden.变否定句
- 10当x趋近于x0时,f(x)有极限,g(x)无极限,讨论当x趋近于x0是,f(x)+g(x)是否有极限?