当前位置: > 设A为对称矩阵,证明A为正交矩阵的充要条件为A^2=E...
题目
设A为对称矩阵,证明A为正交矩阵的充要条件为A^2=E

提问时间:2021-12-05

答案
必要性:若A为正交矩阵,则ATA=E (AT表示A的转置)
又A为对称矩阵,故AT=A
所以 A^2=E
充分性:若A为对称矩阵,即AT=A,且 A^2 =E
所以 ATA=A^2=E
故A为正交矩阵.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.