题目
已知,正方形ABCD的边长为1,直线l1∥直线l2,l1与l2之间的距离为1,l1、l2与正方形ABCD的边总有交点.
(1)如图1,当l1⊥AC于点A,l2⊥AC交边DC、BC分别于E、F时,求△EFC的周长;
(2)把图1中的l1与l2同时向右平移x,得到图2,问△EFC与△AMN的周长的和是否随x的变化而变化,若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由;
(3)把图2中的正方形饶点A逆时针旋转α,得到图3,问△EFC与△AMN的周长的和是否随α的变化而变化?若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由.
(1)如图1,当l1⊥AC于点A,l2⊥AC交边DC、BC分别于E、F时,求△EFC的周长;
(2)把图1中的l1与l2同时向右平移x,得到图2,问△EFC与△AMN的周长的和是否随x的变化而变化,若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由;
(3)把图2中的正方形饶点A逆时针旋转α,得到图3,问△EFC与△AMN的周长的和是否随α的变化而变化?若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由.
提问时间:2021-12-04
答案
(1)如图1,∵正方形ABCD的边长为1,
∴AC=
.
又∵直线l1∥直线l2,l1与l2之间的距离为1.
∴CG=
-1.
∴EF=2
-2,EC=CF=2-
.
∴△EFC的周长为EF+EC+CF=2;
(2)△EFC与△AMN的周长的和不随x的变化而变化.
如图2,把l1、l2向左平移相同的距离,
使得l1过A点,即l1平移到l4,l2平移到l3,
过E、F分别做l3的垂线,垂足为R,G.
可证△AHM≌△ERP,△AHN≌△FGQ.
∴AM=EP,HM=PR,AN=FQ,HN=GQ.
∴△EFC与△AMN的周长的和为△CPQ的周长,由已知可计算△CPQ的周长为2,
∴△EFC与△AMN的周长的和为2;
(3)△EFC与△AMN的周长的和不随α的变化而变化.
如图3,把l1、l2平移相同的距离,使得l1过A点,即l1平移到l4,l2平移到l3,
过E、F分别做l3的垂线,垂足为R,S.过A作l1的垂线,垂足为H.
可证△AHM≌△FSQ,△AHN≌△ERP,
∴AM=FQ,HM=SQ,AN=EP,HN=RP.
∴△EFC与△AMN的周长的和为△CPQ的周长.
如图4,过A作l3的垂线,垂足为T.连接AP、AQ.
可证△APT≌△APD,△AQT≌△AQB,
∴DP=PT,BQ=TQ.
∴△CPQ的周长为DP+PC+CQ+QB=DC+CB=2.
∴△EFC与△AMN的周长的和为2.
∴AC=
2 |
又∵直线l1∥直线l2,l1与l2之间的距离为1.
∴CG=
2 |
∴EF=2
2 |
2 |
∴△EFC的周长为EF+EC+CF=2;
(2)△EFC与△AMN的周长的和不随x的变化而变化.
如图2,把l1、l2向左平移相同的距离,
使得l1过A点,即l1平移到l4,l2平移到l3,
过E、F分别做l3的垂线,垂足为R,G.
可证△AHM≌△ERP,△AHN≌△FGQ.
∴AM=EP,HM=PR,AN=FQ,HN=GQ.
∴△EFC与△AMN的周长的和为△CPQ的周长,由已知可计算△CPQ的周长为2,
∴△EFC与△AMN的周长的和为2;
(3)△EFC与△AMN的周长的和不随α的变化而变化.
如图3,把l1、l2平移相同的距离,使得l1过A点,即l1平移到l4,l2平移到l3,
过E、F分别做l3的垂线,垂足为R,S.过A作l1的垂线,垂足为H.
可证△AHM≌△FSQ,△AHN≌△ERP,
∴AM=FQ,HM=SQ,AN=EP,HN=RP.
∴△EFC与△AMN的周长的和为△CPQ的周长.
如图4,过A作l3的垂线,垂足为T.连接AP、AQ.
可证△APT≌△APD,△AQT≌△AQB,
∴DP=PT,BQ=TQ.
∴△CPQ的周长为DP+PC+CQ+QB=DC+CB=2.
∴△EFC与△AMN的周长的和为2.
(1)分别计算EF、EC、CF的长度,计算△EFC的周长即EF+EC+CF即可;
(2)证明△AHM≌△ERP,△AHN≌△FGQ得AM=EP,HM=PR,AN=FQ,HN=GQ,可得△EFC与△AMN的周长的和不随x的变化而变化.
(3)△AHM≌△FSQ,△AHN≌△ERP可得AM=FQ,HM=SQ,AN=EP,HN=RP.可以求得△EFC与△AMN的周长的和为△CPQ的周长.
(2)证明△AHM≌△ERP,△AHN≌△FGQ得AM=EP,HM=PR,AN=FQ,HN=GQ,可得△EFC与△AMN的周长的和不随x的变化而变化.
(3)△AHM≌△FSQ,△AHN≌△ERP可得AM=FQ,HM=SQ,AN=EP,HN=RP.可以求得△EFC与△AMN的周长的和为△CPQ的周长.
正方形的性质;全等三角形的判定与性质;勾股定理;几何变换的类型.
本题考查了正方形各边长相等的性质,正方形各内角为直角的性质,勾股定理在直角三角形中的运用,几何变换类型题目的解决方法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1It is adapted from the model contract for zhe international sale of goods
- 2端--按字不同意思,组成词语,1.不歪斜()2.一头()3.拿()
- 3与巴西相比 俄罗斯不利于发展农业的条件是
- 4将2.7克金属铝投入到100ml的氢氧化钠的溶液中,溶液在反应前后的体积不变,求生成
- 5<西京杂记>翻译 开头是 衡能说<诗>,时人为之语曰......
- 6怎么当好一个口语老师,面试者可能会问那些问题?要口头英语回答!谢谢!
- 7y=f(x)与x=f-1(y)是反函数且都可导,则f-1(x)的导数用x来表示为?
- 8如图,在三角形ABC中,BP、CP分别是∠ABC、∠ACB的外角平分线.求证:点P必在∠A的平分线上.
- 9give___to____.A:they ,them B:them ,them C:them ,they选哪个啊?
- 10在以下情况中,带“【】”物体所受浮力增大的是( ) A.大江中的【石块】被冲入大海 B.长江中的【轮船】驶入大海 C.海面下正在上升的【潜水艇】 D.停泊在海港内的【轮船】卸载货物
热门考点