当前位置: > 定义在R上的奇函数f(x)为减函数,且对于任意α∈R,不等式f(1-sin²α+sinα)+f(2m)>0恒成立,求m的...
题目
定义在R上的奇函数f(x)为减函数,且对于任意α∈R,不等式f(1-sin²α+sinα)+f(2m)>0恒成立,求m的

提问时间:2021-12-03

答案
f(1-sin²α+sinα)+f(2m)>0, 可得f(2m)>-f(1-sin²α+sinα)
因为f(x)是奇函数,所以f(2m)>f(sin²α-sinα-1)
又f(x)是R上的减函数,有2m
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.