当前位置: > 已知f(x)=1-(cosx)^2,x属于[-π/4,π/4],其单调递增区间为?...
题目
已知f(x)=1-(cosx)^2,x属于[-π/4,π/4],其单调递增区间为?

提问时间:2021-11-25

答案
由公式(cosx)^2=(1+cos2x)/2
f(x)=1-(cosx)^2
=1-[(1+cos2x)/2]
=(1-cos2x)/2
=(1-sin(π/2-2x))/2
=(1+sin(2x-π/2))/2
其递增区间为
(kπ,π/2+kπ),k∈Z
而x∈[-π/4,π/4]
代入知
x∈[0,π/4]时,f(x)递增
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.