当前位置: > 如图,BP、CP分别是ABC的外角∠CBD、∠BCE的平分线.求证:P点在∠BAC的平分线上....
题目
如图,BP、CP分别是ABC的外角∠CBD、∠BCE的平分线.求证:P点在∠BAC的平分线上.

提问时间:2021-11-22

答案
证明:过点P作PM⊥AD于点M,作PN⊥BC于点N,作PG⊥AC于点G,
∵BP、CP分别是ABC的外角∠CBD、∠BCE的平分线,
∴PM=PN,PG=PN,
∴PM=PG,
∴P点在∠BAC的平分线上.
首先过点P作PM⊥AD于点M,作PN⊥BC于点N,作PG⊥AC于点G,由BP、CP分别是ABC的外角∠CBD、∠BCE的平分线,根据角平分线的性质,易证得PM=PN=PG,又由在角内部,且到角两边距离相等的点,在此角的平分线上,证得P点在∠BAC的平分线上.

角平分线的性质.

此题考查了角平分线的性质与判定.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.