当前位置: > 三角形ABC中,AD平分角BAC,M是BC的中点,ME平行AD交AB于F,交CA的延长线于E,证明BE=CF...
题目
三角形ABC中,AD平分角BAC,M是BC的中点,ME平行AD交AB于F,交CA的延长线于E,证明BE=CF
证明BE=CF (2)若AB=3,AC=5,求BC的长

提问时间:2021-11-20

答案
【只能证明第一问,第二问好像跟前面没关系】
【到底是证明BE=CF,还是BF=CE,看我的图】
证明:
作BG//EC,交EM延长线于G
则∠G=∠E,∠GBM=∠C
又∵M是BC的中点,即BM=CM
∴△BMG≌△CME(AAS)
∴BG=CE
∵AD平分∠BAC
∴∠BAD=∠CAD
∵ME//AD
∴∠E=∠CAD,∠BFM=∠BAD
∴∠E=∠BFM
则∠G=∠BFM
∴BF=BG=CE
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.