当前位置: > 若x2+mx+n与x3+2x-1的乘积中不含有x3项和x2项,求m,n的值....
题目
若x2+mx+n与x3+2x-1的乘积中不含有x3项和x2项,求m,n的值.

提问时间:2021-11-14

答案
∵(x2+mx+n)(x2+2x-1)
=x4+2x3-x2+mx3-2mx2-mx+nx2+2nx-n
=x4+(2+m)x3+(-1-2m+n)x2+(-m+2n)x-n,
∴要使x2+mx+n与x3+2x-1的乘积中不含有x3项和x2项,
则有2+m=0,-1-2m+n=0,
解得m=-2,n=-3.
把两个多项式相乘,合并同类项后使结果的x3与x2项的系数为0,求解即可.

多项式乘多项式.

本题主要考查了多项式乘多项式的运算,由不含x3与x2项,让这两项的系数等于0,列方程组是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.