题目
如图1,已知直线y=-2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE=______;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
(l)当点C与点O重合时,DE=______;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
提问时间:2021-11-06
答案
∵直线AB的解析式为y=-2x+4,
∴点A的坐标为(2,0),点B的坐标为(0,4),即可得OB=4,OA=2,
(1)当点C与点O重合时如图所示,
∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=
OA=1;
(2)当CE∥OB时,如图所示:
∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.
(3)当点C与点O重合时,OD取得最大值,此时OD=
OB=2;
当点C与点A重合时,OD取得最小值,如图所示:
在Rt△AOB中,AB=
=2
,
∵DE垂直平分BC(BA),
∴BE=
BA=
,
易证△BDE∽△BAO,
∴
=
,即
=
,
解得:BD=
,
则OD=OB-BD=4-
=
.
综上可得:
≤OD≤2.
∴点A的坐标为(2,0),点B的坐标为(0,4),即可得OB=4,OA=2,
(1)当点C与点O重合时如图所示,
∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=
1 |
2 |
(2)当CE∥OB时,如图所示:
∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.
(3)当点C与点O重合时,OD取得最大值,此时OD=
1 |
2 |
当点C与点A重合时,OD取得最小值,如图所示:
在Rt△AOB中,AB=
OA2+OB2 |
5 |
∵DE垂直平分BC(BA),
∴BE=
1 |
2 |
5 |
易证△BDE∽△BAO,
∴
BE |
BO |
BD |
AB |
| ||
4 |
BD | ||
2
|
解得:BD=
5 |
2 |
则OD=OB-BD=4-
5 |
2 |
3 |
2 |
综上可得:
3 |
2 |
(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
(2)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
(2)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
一次函数综合题.
本题属于一次函数的综合题,涉及了菱形的判定、中垂线的性质及动点问题的计算,难点在第三问,注意分别确定OD取得最大值及最小值的位置是关键,难度较大.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一块长a米,宽b米的玻璃,长宽各裁掉c米后恰好能铺盖一张办公桌台面,问台面面积多少?
- 2对于同一个生物体来说,下列细胞中,其细胞膜的成分中蛋白质的种类和数量最多的是()为什么?A.分生区细
- 3有关重力的物理题
- 4冶炼20T含杂质的质量分数为3%的生铁,需要含氧化铁质量分数为75%的赤铁矿的质量是多少?
- 5a.b.c为三角形的三条边求证aa+bb+cc<2(ab+bc+ac)
- 6如图,已知一块四边形的草地ABCD,其中∠A=60°,∠B=∠D=90°,AB=20米,CD=10米,求这块草地的面积.
- 7二次函数y=ax2+bx+c的图像一部分如右图,已知它的顶点M在第二象限,且经过点A(1,0)B(0,1).
- 8She ______(raise)her eyes from her work.
- 9求矩阵a=第一行1 -1 0 第二行01-1第三行001的逆矩阵
- 10我要几篇美文+赏析!()100字以内)
热门考点
- 1已知矩阵A=diag(1,2,-3),求A的m次多项式=A³+2A²-3A
- 2关于望远镜与小孔成像的关系
- 3同义句转换 Li Ping is going to study for the test . Li Ping is going to _ _the test.
- 45和6的公倍数有哪些
- 5甲乙两车同时从a,b两地相对开出,甲车每小时行60千米,一车每小时行59千米,辆车相遇时驾车多行8千米,a,b两地相聚多少米
- 6建筑结构按所用材料的不同共分几类?各有什么优缺点
- 7怎么样学会写半命题作文?
- 81KN/㎡=多少Kg/㎡)
- 9two-tailed paired-sample t test的意思?
- 10罗马音和汉语拼音区别要全的