当前位置: > 如图1,已知直线y=-2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E. (l)当点C与点O重合时,DE=_; (2)当CE∥OB时,证...
题目
如图1,已知直线y=-2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE=______;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.

提问时间:2021-11-06

答案
∵直线AB的解析式为y=-2x+4,
∴点A的坐标为(2,0),点B的坐标为(0,4),即可得OB=4,OA=2,
(1)当点C与点O重合时如图所示,
作业帮
∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=
1
2
OA=1;
(2)当CE∥OB时,如图所示:
作业帮
∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.
(3)当点C与点O重合时,OD取得最大值,此时OD=
1
2
OB=2;
当点C与点A重合时,OD取得最小值,如图所示:
作业帮
在Rt△AOB中,AB=
OA2+OB2
=2
5

∵DE垂直平分BC(BA),
∴BE=
1
2
BA=
5

易证△BDE∽△BAO,
BE
BO
=
BD
AB
,即
5
4
=
BD
2
5

解得:BD=
5
2

则OD=OB-BD=4-
5
2
=
3
2

综上可得:
3
2
≤OD≤2.
(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
(2)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.

一次函数综合题.

本题属于一次函数的综合题,涉及了菱形的判定、中垂线的性质及动点问题的计算,难点在第三问,注意分别确定OD取得最大值及最小值的位置是关键,难度较大.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.