当前位置: > 两个不共线的向量OA、OB夹角为x,OA=3,OB=2,若点M在直线OB上,且OA+OM的最小值为3/2,求x的值?...
题目
两个不共线的向量OA、OB夹角为x,OA=3,OB=2,若点M在直线OB上,且OA+OM的最小值为3/2,求x的值?

提问时间:2021-11-03

答案
记:向量OK=向量OA+向量OM,过A且与OB平行的直线为L
若向量OK的起点为O,则其终点必在L上.
而向量OK长度的最小值必定发生在OK与L垂直时.
因此有 OAsin(x)=3/2 得到x=30度或150度.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.