当前位置: > ∫cos^4xsin^2xdx怎么积分?...
题目
∫cos^4xsin^2xdx怎么积分?

提问时间:2021-10-23

答案
∵cos^4xsin^2x
=cos^4x(1-cos²x)
=cos^4x-cos^6x
=[1+cos(2x)]²/4-[1+cos(2x)]³/8
=[1+2cos(2x)+cos²(2x)]/4-[1+3cos(2x)+3cos²(2x)+cos³(2x)]/8
=1/8+1/8cos(2x)-1/8cos²(2x)-1/8cos³(2x)
=1/8+1/8cos(2x)-[1+cos(4x)]/16-1/8cos³(2x)
=1/16+1/8cos(2x)-cos(4x)/16-1/8cos³(2x)
∴∫cos^4xsin^2xdx
=∫[1/16+1/8cos(2x)-cos(4x)/16-1/8cos³(2x)]dx
=x/16+sin(2x)/16-sin(4x)/64-1/16∫[1-sin²(2x)]d[sin(2x)]
=x/16+sin(2x)/16-sin(4x)/64-[sin(2x)-sin³(2x)/3]/16+C
=x/16-sin(4x)/64+sin³(2x)/48+C, (C是积分常数).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.