题目
关于勾股定理的小故事?
无
无
提问时间:2021-09-15
答案
勾股的发现
在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么?
只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味.
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法.
1881年,伽菲尔德就任美国第二十任总统.后来,
勾股的证明
人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.
勾股定理同时也是数学中应用最广泛的定理之一.例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率.据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线.
正因为这样,人们对这个定理的备加推崇便不足为奇了.1955年希腊发行了一张邮票,图案是由三个棋盘排列而成.这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献.邮票上的图案是对勾股定理的说明.希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里.
尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理.
2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定.
今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图).七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理.而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板.现在的七巧板是经过一段历史演变过程的.
勾股趣事
甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解.这一定理叫做费尔马大定理(费尔马是17世纪法国数学家).
在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么?
只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味.
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法.
1881年,伽菲尔德就任美国第二十任总统.后来,
勾股的证明
人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.
勾股定理同时也是数学中应用最广泛的定理之一.例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率.据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线.
正因为这样,人们对这个定理的备加推崇便不足为奇了.1955年希腊发行了一张邮票,图案是由三个棋盘排列而成.这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献.邮票上的图案是对勾股定理的说明.希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里.
尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理.
2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定.
今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图).七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理.而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板.现在的七巧板是经过一段历史演变过程的.
勾股趣事
甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解.这一定理叫做费尔马大定理(费尔马是17世纪法国数学家).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1(新概念英语)A private collector is a man who collects ( ).
- 22.006*390-20.06*41+200.6*0.2的简便运算怎嘛写
- 3已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+.
- 4某人因外伤致使脊髓从胸部折断,以后他排尿的情况可能是( ) A.膀胱内有尿就排 B.膀胱充盈到一定程度就排 C.产生尿意就排 D.产生尿意,环境适宜就排
- 5高等数学中可导、可微、可积的关系
- 6法拉第制造了世界上第一台发电机——圆盘式发电机,请问它的原理是什么?
- 7楚人有卖某珠于郑者.为木兰之柜,熏以桂椒,缀以珠玉,饰以玫瑰,缉以翡翠.郑人买其椟而还其珠.大意含
- 8CH4和O2反应,生成什么?CH4和O2的质量比是多少?
- 9已知xy满足y3=根号x^-9+根号9-x^+6分之x-3,试判断x+y是否存在平方根?立方根
- 10正丁烷与氧气反应生成什么?
热门考点
- 1the city is f——for its beautiful hills and lakes
- 2已知数列{an}满足an=2an-1+2n-1(n≥2),a1=5,bn=an−12n (Ⅰ)证明:{bn}为等差数列; (Ⅱ)求数列{an}的前n项和Sn.
- 3急流勇进&激流勇进&急流勇退
- 4有一列火车以每小时140千米的速度离开洛杉矶直奔纽约,同时,另一辆火车以每小时160千米的速度从纽约开往洛杉矶.如果有一只鸟以每小时30千米的速度和两列火车同时启动,从洛杉矶出
- 5小军家每天要喝1/5桶矿泉水,现在家里还剩下1/2桶矿泉水,够喝3天吗?
- 6你觉得XX怎么样?用英语怎么说?
- 72-甲基-2丁醇制备加入丙酮后最终产生白色固体是什么
- 8一块长方形铁皮长为a米,宽为b米(a>b),若集合A={x|x2+ax+b=26x}中只有一个元素m,且集合{a,b}的子集个数也为m,求该长方形铁皮的面积.
- 9分析近几年来我国城乡恩格尔系数不断下降的原因
- 10intend to do和intend doing sth是什么区别?