题目
椭圆C:x2/a2+y2/b2=1(a>b>0)的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足角F1MF2=π/3
(1)求椭圆的离心率e的取值范围(2)当离心率e取得最小值时,点N(0,3根号3)到椭圆上的点最远距离为4根号3,求此时椭圆C的方程(3)设O为坐标原点,P是椭圆C上的一个动点,试求t=(绝对值PF1-PF2绝对值/绝对值OP的取值范围
(1)求椭圆的离心率e的取值范围(2)当离心率e取得最小值时,点N(0,3根号3)到椭圆上的点最远距离为4根号3,求此时椭圆C的方程(3)设O为坐标原点,P是椭圆C上的一个动点,试求t=(绝对值PF1-PF2绝对值/绝对值OP的取值范围
提问时间:2021-05-20
答案
(1)由椭圆定义,c/a=|F1F2|/(|MF1|+|MF2|),
设∠MF1F2=α,因∠F1MF2=π/3,故0<α<2π/3,由正弦定理,
c/a=sin(π/3)/[sinα+sin(2π/3-α)]
=sin(π/3)/[2sin(π/3)cos(π/3-α)]
=1/[2cos(π/3-α)],
cos(π/3-α)的值域是(1/2,1],
∴离心率e=c/a的取值范围是[1/2,1).
(2)e=1/2时a=2c,b=c√3,设P(2ccost,√3csint),则
PN^2=(2ccost)^2+(√3csint-3√3)^2
=4c^2[1-(sint)^2]+3c^2(sint)^2-18csint+27
=-c^2(sint)^2-18csint+4c^2+27
=-(csint+9)^2+4c^2+108,
|PN|<=4√3,∴sint=-1时PN^2取最大值3c^2+18c+27=48,
∴c^2+6c-7=0,c>0,
∴c=1,a=2,b=√3,椭圆的方程是x^2/4=y^2=1.
(3)当P由上顶点向右顶点运动时|t|由0增大至(a-c)/a=1-e,由(1),
t的取值范围是(-1/2,1/2).
设∠MF1F2=α,因∠F1MF2=π/3,故0<α<2π/3,由正弦定理,
c/a=sin(π/3)/[sinα+sin(2π/3-α)]
=sin(π/3)/[2sin(π/3)cos(π/3-α)]
=1/[2cos(π/3-α)],
cos(π/3-α)的值域是(1/2,1],
∴离心率e=c/a的取值范围是[1/2,1).
(2)e=1/2时a=2c,b=c√3,设P(2ccost,√3csint),则
PN^2=(2ccost)^2+(√3csint-3√3)^2
=4c^2[1-(sint)^2]+3c^2(sint)^2-18csint+27
=-c^2(sint)^2-18csint+4c^2+27
=-(csint+9)^2+4c^2+108,
|PN|<=4√3,∴sint=-1时PN^2取最大值3c^2+18c+27=48,
∴c^2+6c-7=0,c>0,
∴c=1,a=2,b=√3,椭圆的方程是x^2/4=y^2=1.
(3)当P由上顶点向右顶点运动时|t|由0增大至(a-c)/a=1-e,由(1),
t的取值范围是(-1/2,1/2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1英语问题会的进来
- 2通过什么实验可以证明声是波的形式在介质中传播的?
- 3中国书法具有哪几种书体?它们在形式上具有哪些特征?在线等~
- 4在等腰三角形ABC中,顶角A为100度,角B的平分线BE交AC于一点E,证明:BC=AE+BE 急
- 5The First Snow
- 6已知函数f(x)=lg(2x-1) 1.求f(x)定义域 值域 2.证明f(x)在定
- 7His father (not be)back home in week.
- 8一个邮递员需要在规定的时间把信件送到某地,如果每小时行二十千米,可知道到24分钟如果每小时行十六千米,则要迟到十五分钟,问规定的时间是多少?他去某地的路有多远?
- 9教学相长的学字是什么意思
- 10十七头牛.怎么分成二分之一,三分之一.和九分之一
热门考点