当前位置: > 以数列{an}的任意相邻两项为坐标的点P(an,a(n+1))(n∈N*)均在一次函数y=2x+k的图像上....
题目
以数列{an}的任意相邻两项为坐标的点P(an,a(n+1))(n∈N*)均在一次函数y=2x+k的图像上.
以数列{an}的任意相邻两项为坐标的点P(an,a(n+1))(n∈N*)均在一次函数y=2x+k的图像上,数列{bn}满足条件:bn=a(n+1)-an(n∈N*,b1≠0).
(1)求证:{bn}是等比数列;
(2)设数列{an},{bn}的前n项和分别为Sn=T4,S5=-9,求k的值

提问时间:2021-05-17

答案
提示:由条件,a(n+1)=2an+k
所以a(n+1)+k=2(an+k)这样求得a(n+1)=2^n(a1+k)-k.
报以bn=2^(n-1)(a1+k).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.