当前位置: > △ABC是等腰直角三角形,∟A=90°,BD平分∟ABC,交AC于点D,CE⊥BD交BD的延长线于E,求证:BD=2CE...
题目
△ABC是等腰直角三角形,∟A=90°,BD平分∟ABC,交AC于点D,CE⊥BD交BD的延长线于E,求证:BD=2CE
△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC,交AC于点D,CE⊥BD交BD的延长线于E,求证:BD=2CE

提问时间:2021-05-08

答案
分别延长CE、BA交于点M
∵∠A=90°
∴∠ABD+∠ADB=90°(Rt△两锐角互余)
∵CE⊥BE
∴∠DCE+∠EDC=90°(Rt△两锐角互余)
∵∠ADB=∠EDC(对顶角相等)
∴∠ABD=∠DCE(等角的余角相等)
在△ABD和△ACM中
∠ABD=∠DCE
AB=AC
∠BAC=∠MAC
∴△ABD≌△ACM(ASA)
∴BD=CM(全等三角形对应边相等)
∵CE⊥BE
∴∠BEM=∠BEC=90°
∵BD平分∠ABC
∴∠MBE=∠CBE
在△BEM和△BEC中
∠MBE=∠CBE
BE=BE
∠BEM=∠BEC
∴△BEM≌△BEC(ASA)
∴CE=ME(全等三角形对应边相等)
∴CM=2CE
∴BD=2CE(等量代换)
以上为答案,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.