当前位置: > 等腰直角三角形ABC中,角A是直角,BD是角B的角平分线交AC于点D,CE垂直于BD交BD延长线于点E.求CE=1/2BD...
题目
等腰直角三角形ABC中,角A是直角,BD是角B的角平分线交AC于点D,CE垂直于BD交BD延长线于点E.求CE=1/2BD

提问时间:2021-05-08

答案
证明:延长CE和BA交于点F
∵BD平分∠ABC →∠CBE=∠EBF
CE⊥BE(BD) →∠CEB=∠FEB
BE是公共边
∴△CEB≌△FEB →CE=EF=1/2CF
∵∠FCA+∠CDE=90=∠ADB+∠ABD,∠CDE=∠ADB,→∠FCA=∠DBA
∠A=90°→∠CAF=∠BAD
AC=AB
∴△CAF≌△BAD →CF=BD
又∵CE=EF=1/2CF(已证)
∴CE=1/2BD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.