题目
设向量组α1,α2,α3线性无关,β1=α1+2α2+α3,β2=α1+α2+α3,β3=α1+3α2+4α3线性无关
提问时间:2021-05-06
答案
证:设 k1β1+k2β2+k3β3=0
则 k1(α1+2α2+α3)+k2(α1+α2+α3)+k3(α1+3α2+4α3)=0
即有 (k1+k2+k3)α1+(2k1+k2+3k3)α2+(k1+k2+4k3)α3=0
因为 α1,α2,α3 线性无关
所以
k1+k2+k3 = 0
2k1+k2+3k3 = 0
k1+k2+4k3 = 0
因为系数行列式
1 1 1
2 1 3
1 1 4
= -3 ≠ 0
所以方程组只有零解:k1=k2=k3=0
所以 β1,β2,β3 线性无关.
另证:由已知
(β1,β2,β3)=(α1,α2,α3)P
其中P=
1 1 1
2 1 3
1 1 4
且由|P|= -3 ≠ 0 知P可逆.
因为α1,α2,α3线性无关
所以 r(β1,β2,β3)=r(P)=3.[参]
所以 β1,β2,β3 线性无关.
这个结论在解答判断题时非常有效,只需计算组合系数行列式是否为0即可
则 k1(α1+2α2+α3)+k2(α1+α2+α3)+k3(α1+3α2+4α3)=0
即有 (k1+k2+k3)α1+(2k1+k2+3k3)α2+(k1+k2+4k3)α3=0
因为 α1,α2,α3 线性无关
所以
k1+k2+k3 = 0
2k1+k2+3k3 = 0
k1+k2+4k3 = 0
因为系数行列式
1 1 1
2 1 3
1 1 4
= -3 ≠ 0
所以方程组只有零解:k1=k2=k3=0
所以 β1,β2,β3 线性无关.
另证:由已知
(β1,β2,β3)=(α1,α2,α3)P
其中P=
1 1 1
2 1 3
1 1 4
且由|P|= -3 ≠ 0 知P可逆.
因为α1,α2,α3线性无关
所以 r(β1,β2,β3)=r(P)=3.[参]
所以 β1,β2,β3 线性无关.
这个结论在解答判断题时非常有效,只需计算组合系数行列式是否为0即可
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1杠杆平衡公式如何表示具体(最好有例题)谢谢.
- 2小明解方程2x−15+1=x+a/2时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.
- 3一道初二关于梯形的数学题
- 4为什么新民主主义革命的革命性质是资产阶级民主革命,而不是无产阶级民主革命呢?不是说新民主主义革命的
- 5数列an满足a1=1,a2=2,an+2=(1-1/3cos^2n*π/2)+2sin^2*π/2,(1)求an的通项公式 (2)求S2n
- 6授时历作者是谁?
- 7对于鞠躬怎么理解含义?
- 8盛有冰水的被子放在空气中,外壁会潮湿,说明什么?
- 9He is the most careful student in our class. (改为比较级) He is ___ ___ than ___ ___ ___ in our cl
- 10关于英式和美式发音不同的问题
热门考点