当前位置: > ∫(x+x2)/√(1+x2)dx...
题目
∫(x+x2)/√(1+x2)dx
用换元法求如题积分

提问时间:2021-05-05

答案
你将(x+x^2)/(1+x^2)拆成两项x/(1+x^2)+x^2/(1+x^2),这时候你再用换元法做应当是比较容易的.你设x=tan(t)
对于前一项就是∫tan(t)dt=-ln(cos(t))+C1,
后一项就是∫tan^2(t)dt=∫(sec^2(t)-1)dt=tan(t)-t+C2
于是结果为
tan(t)-t-ln(cos(t))+C
最后一步再将t换加x
得x-atan(x)-ln(1/sqrt(1+x^2)) +C 其中sqrt为根号
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.