题目
已知:如图,AD⊥CD,BC⊥CD,D、C分别为垂足,AB的垂直平分线EF交AB于点E,交CD于点F,BC=DF.求证:
(1)∠DAF=∠CFB;
(2)EF=
AB.
(1)∠DAF=∠CFB;
(2)EF=
1 |
2 |
提问时间:2021-05-05
答案
证明:(1)EF垂直平分AB,
∴AF=BF,AE=BE.
∵AD⊥CD,BC⊥CD,
∴∠D=∠C=90°.
在Rt△ADF和Rt△FCB中
,
∴△ADF≌△FCB(HL),
∴∠DAF=∠CFB;
(2)∵∠D=90°,
∴∠DAF+∠DFA=90°,
∴∠CFB+∠DFA=90°,
∴∠AFB=90°.
∴△AFB是等腰直角三角形.
∵AE=BE,
∴EF=
AB.
∴AF=BF,AE=BE.
∵AD⊥CD,BC⊥CD,
∴∠D=∠C=90°.
在Rt△ADF和Rt△FCB中
|
∴△ADF≌△FCB(HL),
∴∠DAF=∠CFB;
(2)∵∠D=90°,
∴∠DAF+∠DFA=90°,
∴∠CFB+∠DFA=90°,
∴∠AFB=90°.
∴△AFB是等腰直角三角形.
∵AE=BE,
∴EF=
1 |
2 |
(1)根据条件可以得出△ADF≌△FCB就可以得出∠DAF=∠CFB;
(2)根据∠DAF+DFA=90°可以得出∠AFB=90°,就可以得出△AFB是等腰直角三角形,由EF是AB的垂直平分线就可以得出EF=
AB.
(2)根据∠DAF+DFA=90°可以得出∠AFB=90°,就可以得出△AFB是等腰直角三角形,由EF是AB的垂直平分线就可以得出EF=
1 |
2 |
全等三角形的判定与性质;直角三角形斜边上的中线.
本题考查了直角三角形的性质的运用,垂直平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键、
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1已知sin (π/6-x) =3/5,则cos(x+π/3)
- 2英语翻译
- 3井冈山会师的主要原因?
- 4如图,在Rt三角形ABC中,角ABC=90度,AC=BC,D为BC的中点,CE垂直AD,垂足为点E,BF//AC交CE的的延长线于 点 F.若AC=12,求DF.
- 5解关于x的方程组{x/3=y/2=z/ 5 ① {2x+3y-4z=8 ②
- 6U2合唱团在17分钟 内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒.一次同时最多可以有两人一起 过桥,而过桥的时候必须持有手电筒
- 7一个弹簧振子的振动周期 0.4s,从平衡住置开始向右运动,经过1.25s时振子的运动情况为何是向左减速?
- 8"戈"少一撇,下面加一个"心"字是什么字?怎么拼的?
- 9请给下面的句子换一种说法?
- 10老鹰在高空盘旋,启示人们什么