题目
如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 ___ 秒,四边形APQC的面积最小.
提问时间:2021-05-05
答案
设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,
则有:
S=S△ABC-S△PBQ
=
×12×24-
×4t×(12-2t)
=4t2-24t+144
=4(t-3)2+108.
∵4>0
∴当t=3s时,S取得最小值.
则有:
S=S△ABC-S△PBQ
=
1 |
2 |
1 |
2 |
=4t2-24t+144
=4(t-3)2+108.
∵4>0
∴当t=3s时,S取得最小值.
根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值.
["二次函数的应用"]
本题考查了函数关系式的求法以及最值的求法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1does she have a present?肯否定回答
- 2铝、铜、氢气与氧气反应的现象
- 3英语翻译
- 4He has lived here for ten years and he gets used ___ here now.
- 5已知(a-2)的平方+(b+1)的绝对值=0,求2(2ab+5a的平方b)-3(a平方b-ab)
- 6巧算二十四点
- 7小人之谓不免,君子以为必归,以德为怨,秦不其然.翻译
- 8实验证明通电导线和磁体一样,周围存在(),证明了电和磁之间是相互()的,最早发现这一现象的是科学家().
- 9方程根号4+4x-x2=2-x/x-1的实根共有______个
- 10They ran over to w____ the guests.
热门考点