题目
已知函数f(x)=x3-3ax-1,a≠0.若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,则m的取值范围是______.
提问时间:2021-05-05
答案
函数的导数为f'(x)=3x2-3a,因为f(x)在x=-1处取得极值,
所以f'(-1)=0,即3-3a=0,解得a=1.
所以f(x)=x3-3x-1,f'(x)=3x2-3=3(x2-1)=3(x-1)(x+1),
当f'(x)>0,得x>1或x<-1.当f'(x)<0,得-1<x<1.
即函数在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3,
要使直线y=m与y=f(x)的图象有三个不同的交点,则m小于极大值,大于极小值,
即-3<m<1,所以m的取值范围是(-3,1).
故答案为:(-3,1).
所以f'(-1)=0,即3-3a=0,解得a=1.
所以f(x)=x3-3x-1,f'(x)=3x2-3=3(x2-1)=3(x-1)(x+1),
当f'(x)>0,得x>1或x<-1.当f'(x)<0,得-1<x<1.
即函数在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3,
要使直线y=m与y=f(x)的图象有三个不同的交点,则m小于极大值,大于极小值,
即-3<m<1,所以m的取值范围是(-3,1).
故答案为:(-3,1).
利用函数f(x)在x=-1处取得极值,先求出a.要使直线y=m与y=f(x)的图象有三个不同的交点,则说明m小于极大值,大于极小值.
函数在某点取得极值的条件.
本题的考点是利用导数研究函数的极值,以及函数的交点问题.要注意利用数形结合的数学思想去解决.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1徘徊的反义词徘徊徘徊的反义词徘徊的反义词的反义词徘徊的反义词徘徊的反义词
- 2(负a)分之b=( ) 分之负b=负___
- 386+78+77+83+91+74+92+76+84+75= 用简便方法 急
- 4梯形的面积740平方米,上底38米,这个梯形的下底是几米?
- 5光速是多少了
- 6but the boss wants me to do some extra
- 7CaCO3===(Ca2+) +(CO3)2-为什么往里面加入CO2可使固体量减少?
- 82:3;5;8;这四个数最小公倍数
- 9West Lake is surrounded on three sides by mountains.中的on如何解释?
- 10核外电子数量