题目
(1)求过点M(2,4)向圆(x-1)^2+(y+3)^2=1所引切线方程 (2)过点M(2,4)向圆(x-1)^2+(y+3)^2=1引两条切线,切点为P.Q 求P,Q所在直线方程
提问时间:2021-05-05
答案
(1) 易知圆(x-1)^2+(y+3)^2=1的圆心为(1,-3)
半径为r = 1
·若直线斜率不存在,即直线方程为 x=2时,刚好和圆相切,满足题意.
·若直线斜率存在,设点斜式方程为 y-4 = k(x-2)
即 kx-2k+4 -y = 0
因圆与直线相切,应该有圆心到直线的距离等于圆半径.所以有
|k-7|/√(k^2+1) = 1
解得 k= 24/7
即直线方程为
y= 24/7x -20/7
(2)
易知P,Q所在直线过切点(2,3)
且 与直线 OM垂直
OM所在直线斜率为 Kom = [4-(-3)]/(2-1) = 7
所以
Kpq = -1/Kom = -1/7
由点斜式写PQ的直线方程为:
y-3 = -1/7(x-2)
即
y = -1/7x + 23/7
半径为r = 1
·若直线斜率不存在,即直线方程为 x=2时,刚好和圆相切,满足题意.
·若直线斜率存在,设点斜式方程为 y-4 = k(x-2)
即 kx-2k+4 -y = 0
因圆与直线相切,应该有圆心到直线的距离等于圆半径.所以有
|k-7|/√(k^2+1) = 1
解得 k= 24/7
即直线方程为
y= 24/7x -20/7
(2)
易知P,Q所在直线过切点(2,3)
且 与直线 OM垂直
OM所在直线斜率为 Kom = [4-(-3)]/(2-1) = 7
所以
Kpq = -1/Kom = -1/7
由点斜式写PQ的直线方程为:
y-3 = -1/7(x-2)
即
y = -1/7x + 23/7
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1X+Y=8860,Y=2X+100.
- 2用鸟字组词和造句
- 3夏天 关紧门窗 把正在工作的冰箱门打开 室内温度变化
- 4张老师带一笔钱去文具店买奖品,如果都买钢笔,可以买120支,如果都买笔记本,可以买200本.如果一支钢笔和一本笔记本作为一套奖品,张老师带的钱可以买几套奖品?
- 5origin8.0如何求平均值,标准差什么的.
- 6汉语翻译成英文,给出的短语必须用到(我把咖啡洒了一桌“spill”)
- 7用pick的词组来代替括号中的动词
- 8改为特殊疑问句They are TOM is parents.(急)
- 9某有机物的相对分子质量接近,经燃烧测定含碳64.87%,含氢元素13.51%,氧元素21.62%.求该有机物化学式.
- 10带负电的胶粒为什么要向阴极跑
热门考点