当前位置: > 求曲面(x^2+y^2+z^2)^2=a^3z(a>0)所围成的立体体积...
题目
求曲面(x^2+y^2+z^2)^2=a^3z(a>0)所围成的立体体积
如题,利用球面坐标写

提问时间:2021-05-04

答案
球面坐标,(x^2+y^2+z^2)^2=a^3z可以写作,r^4=a^3rcosφ得到r=a(cosφ)^(1/3)因为r>0, 所以φ∈[0,π/2]V=∫∫∫r^2sinφdrdθdφ=[∫(0->2π)dθ]* [∫(0->π/2)dφ]* [∫(0->a(cosφ)^(1/3)) r^2sinφdr]=πa^3/3...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.