题目
设m为实数,函数f(x)=2x^2+(x-m)|x-m|,h(x)=f(x)/x x不等于0 0x=0 (1)若f(1)>=4,求m的取值范围(2)
当m>0时,求证h(x)在[m,+∞)上是单调递增函数
当m>0时,求证h(x)在[m,+∞)上是单调递增函数
提问时间:2021-05-03
答案
(1)
f(1)=2+(1-m)|1-m| ≥ 4
当m>1时,(1-m)(m-1) ≥ 2,无解;
当m ≤ 1时,(1-m)(1-m) ≥ 2,解得:m ≤ 1-√2
∴m的取值范围是:m ≤ 1-√2
(2)
∵m>0,x ≥ m
∴h(x)=f(x)/x
=[2x²+(x-m)(x-m)]/x
=[2x²+x²+m²-2mx]/x
=(3x²+m²-2mx)/x
=3x+(m²/x)-2m
任取m ≤ x1 ≤ x2,
则h(x2)-h(x1)
=[3x2+(m²/x2)-2m]-[3x1+(m²/x1)-2m]
=(3x2-3x1)+[ m²(x1-x2) /(x1x2) ]
=[3x1x2(x2-x1)+m²(x1-x2)]/(x1x2)
=[(x2-x1)(3x1x2-m²)]/(x1x2)
=(x2-x1)[(3x1x2-m²)/(x1x2)]
∵x2-x1>0,3x1x2-m²>3m²-m²>0,x1x2>0
∴h(x2)-h(x1)>0
即h(x1)<h(x2)
即h(x)在[m,+∞)为单调递增函数
f(1)=2+(1-m)|1-m| ≥ 4
当m>1时,(1-m)(m-1) ≥ 2,无解;
当m ≤ 1时,(1-m)(1-m) ≥ 2,解得:m ≤ 1-√2
∴m的取值范围是:m ≤ 1-√2
(2)
∵m>0,x ≥ m
∴h(x)=f(x)/x
=[2x²+(x-m)(x-m)]/x
=[2x²+x²+m²-2mx]/x
=(3x²+m²-2mx)/x
=3x+(m²/x)-2m
任取m ≤ x1 ≤ x2,
则h(x2)-h(x1)
=[3x2+(m²/x2)-2m]-[3x1+(m²/x1)-2m]
=(3x2-3x1)+[ m²(x1-x2) /(x1x2) ]
=[3x1x2(x2-x1)+m²(x1-x2)]/(x1x2)
=[(x2-x1)(3x1x2-m²)]/(x1x2)
=(x2-x1)[(3x1x2-m²)/(x1x2)]
∵x2-x1>0,3x1x2-m²>3m²-m²>0,x1x2>0
∴h(x2)-h(x1)>0
即h(x1)<h(x2)
即h(x)在[m,+∞)为单调递增函数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 11公升=多少毫升
- 2彩票概率计算问题
- 31又2002分之1+2又2002分之2+3又2002分之3.+2001又2002分之2001
- 420件货物中3件次品,从中任意抽4次,4件中至多一件次品的概率是?
- 5三力一思 什么字
- 6西周青铜器主要用于 A.生活 B 祭祀 C.生产 D.武器
- 7People in Shanghai are sparing no effort with the government to create ____ they hope will be the be
- 8( ) 【某止咳药广告】 ( )【某蚊香广告】 是正确的成语!
- 9已知多项式(m-2)x2+2xy-y2+3x2-x+1中不含x2项,求3m2-m+1的值.急...
- 10为什么说以人为本是科学发展观的核心和本质