题目
高二数学∶已知圆C经过点A(‐2,0)B(0,2),且圆心C在Y=X上,又与直线Y=KX+1与圆C相交于P,Q两点(1)求圆C的方程;(2)过点(0,1)作直线L’与L垂直,且直线L’与圆C交于M,N两点,求四边形PMQN面积的最大值
提问时间:2021-04-30
答案
1)设圆的方程为
x²+y²+Dx+Ey+F=0
圆心C在直线y=x上
∴D=E
将点A(-2,0),B(0,2)代入
4-2D+F=0
4+2D+F=0
解得:F=-4,D=E=0
∴圆的方程为x²+y²=4
设直线l:y=kx+1的参数方程为
{x=tcosθ,y=1+tsinθ (θ为倾斜角)
代入x²+y²=4
t²cos²θ+(1+tsinθ)²=4
即t²+2tsinθ-3=0
设l与圆交点P,Q对应的参数分别为
t1,t2,那么t1+t2=-2sinθ,t1t2=-3
∴|AB|=|t1-t2|=√[(t1+t2)²-4t1t2]
=√[4sin²θ+12]
∵l1⊥l2
l1的参数方程为
{x=tcos(θ+π/2),y=1+tsin(θ+π/2)
设l1与圆交点M,N对应的参数分别为t3,t4
∴
同理得到
|CD|=√[4sin²(θ+π/2)+12]=√[4cos²θ+12]
四边形PMQN面积
S=1/2*|AB|*|CD|
=2√[(sin²θ+3)(cos²θ+3)]
=2√(sin²θcos²θ+12)
=2√[(sin2θ)/4+12]
≤2√(49/4)=7
当sin2θ=1,θ=45º时,S取得最大值7
x²+y²+Dx+Ey+F=0
圆心C在直线y=x上
∴D=E
将点A(-2,0),B(0,2)代入
4-2D+F=0
4+2D+F=0
解得:F=-4,D=E=0
∴圆的方程为x²+y²=4
设直线l:y=kx+1的参数方程为
{x=tcosθ,y=1+tsinθ (θ为倾斜角)
代入x²+y²=4
t²cos²θ+(1+tsinθ)²=4
即t²+2tsinθ-3=0
设l与圆交点P,Q对应的参数分别为
t1,t2,那么t1+t2=-2sinθ,t1t2=-3
∴|AB|=|t1-t2|=√[(t1+t2)²-4t1t2]
=√[4sin²θ+12]
∵l1⊥l2
l1的参数方程为
{x=tcos(θ+π/2),y=1+tsin(θ+π/2)
设l1与圆交点M,N对应的参数分别为t3,t4
∴
同理得到
|CD|=√[4sin²(θ+π/2)+12]=√[4cos²θ+12]
四边形PMQN面积
S=1/2*|AB|*|CD|
=2√[(sin²θ+3)(cos²θ+3)]
=2√(sin²θcos²θ+12)
=2√[(sin2θ)/4+12]
≤2√(49/4)=7
当sin2θ=1,θ=45º时,S取得最大值7
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1说虎
- 2设根号13的整数部分为a,小数部分为b,则2a-b=多少?
- 3I am crazy about the rain
- 4他会画画吗?英语怎么说
- 5街心花园有一块边长为a米的正方形草坪,经统一规划后,南北方向要增加2米,如果改造完后的长方形
- 6开头字母是A的单词
- 7小明在计算34.72除以一个数时,由于将含有一位小数的除数看成了整数,结果得1.24.这道题的除数是_.
- 8Jenny ___ (like) __- (skate) __ (介) winter
- 9避什么就什么的成语
- 10商店里有6箱质量不等的货物,分别装货15、16、18、19、20、31千克.有两位顾客买走了其中5箱货物,而且一个顾客买的货物的质量是另一个顾客的2倍,商店剩下的1箱货物重多少千克?