当前位置: > 设k为正整数,证明: (1)如果k是两个连续正整数的乘积,那么25k+6也是两个连续正整数的乘积; (2)如果25k+6是两个连续正整数的乘积,那么k也是两个连续正整数的乘积....
题目
设k为正整数,证明:
(1)如果k是两个连续正整数的乘积,那么25k+6也是两个连续正整数的乘积;
(2)如果25k+6是两个连续正整数的乘积,那么k也是两个连续正整数的乘积.

提问时间:2021-04-29

答案
证明:(1)设两个连续正整数可表示为x,x+1,那么k=x(x+1),
   25k+6,
=25x(x+1)+6,
=25x2+25x+6,
=(5x+2)(5x+3),
∴也是两个连续数的乘积,
∴如果k是两个连续正整数的乘积,那么25k+6也是两个连续正整数的乘积;
(2)设25k+6=m(m+1),m为正整数,
则100k+25=4m(m+1)+1=4m2+4m+1=(2m+1)2=52×(4k+1),
∴2m+1是5的倍数,且2m+1/5是奇数,
∴设
2m+1
5
=2x+1(x为正整数),
则4k+1=(
2m+1
5
2=(2x+1)2
∴4k+1=4x2+4x+1,
∴4k=4x2+4x,
∴k=x(x+1),
∴k是连续两个正整数的积.
(1)假设出连续的两个正整数,进而求出两者的积即可;
(2)根据(1)式证明得出原式=(5m+2)(5m+3),进而得出K=m(m+1).

因式分解的应用.

此题主要考查了因式分解的应用,熟练地应用因式分解是解决问题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.