题目
如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.
提问时间:2021-04-28
答案
△MEF是等腰直角三角形.证明如下:
连接AM,
∵M是BC的中点,∠BAC=90°,AB=AC,
∴AM=
BC=BM,AM平分∠BAC.
∵∠MAC=∠MAB=
∠BAC=45°.
∵AB⊥AC,DE⊥AC,DF⊥AB,
∴DE∥AB,DF∥AC.
∵∠BAC=90°,
∴四边形DFAE为矩形.
∴DF=AE.
∵DF⊥BF,∠B=45°.
∴∠BDF=∠B=45°.
∴BF=FD,∠B=∠MAE=45°,
∴AE=BF.
∵AM=BM
∴△AEM≌△BFM(SAS).
∴EM=FM,∠AME=∠BMF.
∵∠AMF+∠BMF=90°,
∴∠AME+∠AMF=∠EMF=90°,
∴△MEF是等腰直角三角形.
连接AM,
∵M是BC的中点,∠BAC=90°,AB=AC,
∴AM=
1 |
2 |
∵∠MAC=∠MAB=
1 |
2 |
∵AB⊥AC,DE⊥AC,DF⊥AB,
∴DE∥AB,DF∥AC.
∵∠BAC=90°,
∴四边形DFAE为矩形.
∴DF=AE.
∵DF⊥BF,∠B=45°.
∴∠BDF=∠B=45°.
∴BF=FD,∠B=∠MAE=45°,
∴AE=BF.
∵AM=BM
∴△AEM≌△BFM(SAS).
∴EM=FM,∠AME=∠BMF.
∵∠AMF+∠BMF=90°,
∴∠AME+∠AMF=∠EMF=90°,
∴△MEF是等腰直角三角形.
根据已知,利用SAS判定△AEM≌△BFM,从而得到EM=FM;根据角之间的关系可求得∠EMF=90°,即△MEF是等腰直角三角形.
等腰三角形的判定.
此题主要考查学生对等腰三角形的判定的理解及运用;得到AE=BF是正确解答本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 19.953保留一位小数的近似数是_;精确到个位是_.
- 2幼儿园老师给小朋友分糖果.若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块.那么糖果最多有多少块?
- 3Na2SO4和BaCl2在干态下会不会反应?为什么
- 4如图所示两灯并联,S是总开关,S1只控制灯泡L1,请将所缺的导线补上.
- 5地震产生的次声波在空气中的传播速度是多少?
- 6The tourists asked the guide when they would get to Beijing 直接引语和间接引语的转换
- 7郦道元的三峡古文
- 8设X是未知向量,解方程5(X+a)+3(X-b)=0
- 9时间,抓得住就是金钱,抓不住就是流水.仿写.
- 10在数轴上怎么画根号15的对应点?