当前位置: > 已知抛物线y^2=4x上动点P,定点A(m,0),以PA为直径的圆恒与y轴相切,...
题目
已知抛物线y^2=4x上动点P,定点A(m,0),以PA为直径的圆恒与y轴相切,
抛物线上另一动点Q到其准线距离为d1,到直线mx-2y+9=0的距离为d2,则d1+d2的最小值为

提问时间:2021-04-27

答案
设P(t^2,2t)
因为 定点A(m,0),以PA为直径的圆恒与y轴相切
所以 (t^2-m)^2+4t^2=4·[(t^2+m)/2]^2
即t^2(m-1)=0
因为对任意t 上式恒成立
所以m=1
直线mx-2y+9=0 为 x-2y+9=0
设抛物线焦点为F(1,0)
则d1=|QF|
关于一个动点P到直线x-2y+9=0和到顶点F(1,0)的距离和的最小值的问题,则点F到直线x-2y+9=0的距离2√5为所求的最小值.(由几何图形分析可得)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.