当前位置: > 知A,B是圆O:x^2+y^2=16上的两点且|AB|=6,若以AB的长为直径的圆M恰好经过点C(1,-1),则圆心M的轨迹方程...
题目
知A,B是圆O:x^2+y^2=16上的两点且|AB|=6,若以AB的长为直径的圆M恰好经过点C(1,-1),则圆心M的轨迹方程
除了(x-1)²+(y+1)²=9
还不可以是x²+y²=7,就以O为圆心?
我觉得貌似可以,但不确定

提问时间:2021-04-25

答案
不能这样,你的相法出现的偏差,主要是没有理解好问题中的关键话语:以AB的长为直径的圆M恰好经过点C(1,-1),则圆心M的轨迹方程.你可以下思路来考虑:
(1) 设圆M圆心的坐标为(x, y) ,
(2) 以AB的长为直径的圆M恰好经过C(1,-1),
这就是说:从圆心M(x, y) 到C(1,-1)的距离是AB的一半
则圆M的半径为|AB|/2 = 6/2 = 3
根据两点间的距离公式有: (x - 1)² + ( y + 1)² = 3²
即:(x - 1)² + (y + 1)² = 9
从以上分析可以看出,动圆M的圆心不在坐标系的坐标原点
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.