当前位置: > 函数f(x)=x^3-4ax^2+5x(a属于R)在(0,2】上无极值,求a取值...
题目
函数f(x)=x^3-4ax^2+5x(a属于R)在(0,2】上无极值,求a取值
答案的方法是
即f'(x)在(0,2]上无解或有两个相同的解.
当f'(x)=0在(0,2]上无解,由8a=(3x^2+5)/x 属于[2根号15,正无穷大),
则8a

提问时间:2021-04-22

答案
因为f(x)在(0,2]上无极值,且f'(x)=3x^2-8ax+5,
由于f'(x)是二次函数且开口向上,
所以f(x)的导数f'(x)等于0有两个相同的解,或者是f'(x)>0
否则f'(x)=0有两个不同的解的话,它就有极值点了.
你补充是的地方,这里用的是反证法,假如f'(x)=0有解,则8a=(3x^2+5)/x=3x+5/x
再利用基本不等式a+b>=2sqrt(ab)可知8a=3x+5/x>=2sqrt(3x*(5/x))=2sqrt(15)
当且仅当3x=5/x时,即x=sqrt(15)/3属于(0,2],等号成立.
从而就得到反面是8a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.