题目
在梯形ABCD中,两底AB与DC的距离是3,若AB=2,CD=4 三角形MCD和三角形NAB公共部分面积是否随点N变化而变化
在梯形ABCD中,两底AB与DC的距离是3,若AB=2,CD=4,点M为AB中点,点N为线段DC上任一点,线段DM与AN交于E,线段NB与CM交于点F.
问在梯形ABCD中,两底AB与DC的距离是3,若AB=2,CD=4,若变化,求出取值范围;若不变化,求出其值.
谢.
在梯形ABCD中,两底AB与DC的距离是3,若AB=2,CD=4,点M为AB中点,点N为线段DC上任一点,线段DM与AN交于E,线段NB与CM交于点F。
问的是,三角形MCD和三角形NAB公共部分面积是否随点N变化而变化,若变化,求出取值范围;若不变化,求出其值。
在梯形ABCD中,两底AB与DC的距离是3,若AB=2,CD=4,点M为AB中点,点N为线段DC上任一点,线段DM与AN交于E,线段NB与CM交于点F.
问在梯形ABCD中,两底AB与DC的距离是3,若AB=2,CD=4,若变化,求出取值范围;若不变化,求出其值.
谢.
在梯形ABCD中,两底AB与DC的距离是3,若AB=2,CD=4,点M为AB中点,点N为线段DC上任一点,线段DM与AN交于E,线段NB与CM交于点F。
问的是,三角形MCD和三角形NAB公共部分面积是否随点N变化而变化,若变化,求出取值范围;若不变化,求出其值。
提问时间:2021-04-22
答案
是变化的,我来给你解答
连接MN,可以很容易证明S△AMD=S△AMN,S△BMN=S△BMC(等底等高的三角形面积相等)
进而S△AED= S△MEN,S△MFN= S△BCF
故 S四边形MENF=S△MEN+S△MFN=S△AED+S△BCF
S四边形MENF+S△AED+S△BCF=2S四边形MENF=S梯形ABCD-S△AME-S△BMF- S△DNE-S△NFC
而很容易证明S△AME:S△DNE=AM^2:DN^2,S△BMF:S△NFC=BM^2:NC^2
2S四边形MENF=S梯形ABCD-S△AME-S△BMF- S△DNE-S△NFC
故2S四边形MENF=S梯形ABCD-S△AME-S△BMF- S△DNE-S△NFC
连接MN,可以很容易证明S△AMD=S△AMN,S△BMN=S△BMC(等底等高的三角形面积相等)
进而S△AED= S△MEN,S△MFN= S△BCF
故 S四边形MENF=S△MEN+S△MFN=S△AED+S△BCF
S四边形MENF+S△AED+S△BCF=2S四边形MENF=S梯形ABCD-S△AME-S△BMF- S△DNE-S△NFC
而很容易证明S△AME:S△DNE=AM^2:DN^2,S△BMF:S△NFC=BM^2:NC^2
2S四边形MENF=S梯形ABCD-S△AME-S△BMF- S△DNE-S△NFC
故2S四边形MENF=S梯形ABCD-S△AME-S△BMF- S△DNE-S△NFC
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1形容气势汹汹、盛气凌人的词
- 2协方差公式Cov(X,Y)=E(((X-E(X))(Y-E(Y)))即Cov(X,Y)=E(XY)-E(X)E(Y)中 E(XY)怎么求啊?
- 3静电场的题目一道
- 4ab两人都匀速在环形跑道上跑步,若同时同地跑,相向而行,则每隔6分钟相遇一次,一直b比a跑得慢.求ab每分钟分别跑多少圈
- 5已知DE垂直AC,角AGF=角ABC,角1+角2=180°,试判断BF与AC的位置关系,并对结论进行证明
- 6用数学符号表示奇数,偶数,y轴、x轴上的点
- 7天平两托盘上的烧杯中,分别放有50克、溶质质量分数9.8%的稀硫酸,调整天平至平衡后,向天平左端烧杯中加入4.4克铁锈(不含单质铁), (1)写出铁锈与稀硫酸发生反应的化学方程式:_
- 8为什么铁在盐溶液里生锈得更快
- 91A:B:No,there are many trees and small houses in the eilage.
- 10乘坐校车可以说 in the school
热门考点