当前位置: > 1 4 9 16 N2 的前N项和是?...
题目
1 4 9 16 N2 的前N项和是?

提问时间:2021-04-21

答案
1^n+2^n+3^n+4^n+…+n^n=1/6*n(n+1)(2n+1)
方法:
利用恒等式(n+1)^3=n^3+3n^2+3n+1得:
(n+1)^3-n^3=3n^2+3n+1
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
……
3^3-2^3=3*2^2+3*2+1
2^3-1^3=3*1^2+3*1+1
相加得:
(n+1)^3-1=3(1^2+2^2+…+n^2)+3(1+2+…+n)+n
整理得:
1^n+2^n+…+n^n=1/6*n(n+1)(2n+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.