当前位置: > 第二型曲线积分问题...
题目
第二型曲线积分问题
∫L ydx+zdy+xdz,其中L是x+y=2与x^2+y^2+z^2=2(x+y)的交线,从原点看去是顺时针方向
答案是-2√2π,可我算出来却是2,

提问时间:2021-04-19

答案
设S是平面x+y=2被x^2+y^2+z^2=2(x+y)截得的部分,取上侧,则S的单位法向量
n=(cosα,cosβ,cosγ)=(1/√2,1/√2,0),由斯托克斯公式,原积分=-∫∫dxdy+dydz+dzdx=
-∫∫(cosα+cosβ+cosγ)dS=-2/√2∫∫dS,由于所截曲线为球面x^2+y^2+z^2=4与x+y=2的交线,可求得其圆周半径为√2,所以∫∫dS=2π,原积分=-2√2π
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.