当前位置: > 在三角形ABC中,∠BAC=120度,以BC为边向外作等边三角形BCD.求证:AD平分∠BAC ,并且AD=AB+AC...
题目
在三角形ABC中,∠BAC=120度,以BC为边向外作等边三角形BCD.求证:AD平分∠BAC ,并且AD=AB+AC

提问时间:2021-04-19

答案
由∠BAC=120度,等边三角形中∠BDC=60度,则∠BAC+∠BDC=180度,四边形ABDC内接于某个圆.而等边三角形中BC和CD是圆内相等的两条弦,因此所对的角相等,即∠CAD=∠BAD,AD平分∠BAC .
又∠BAC=120度,故∠CAD=∠BAD=60度.在AD上取一点E,使得AE=AB.而∠BAD=60度,则三角形BAE为等边三角形,BE=AB.进一步,∠ABE=∠DBC=60度,减去一个公共角∠CBE,得到∠ABC=∠DBE.再有等边三角形BCD中BC=BD,由全等三角形的边角边定理,三角形ABC和三角形EBD0全等.于是,对应边DE=AC.再加上AB=AE,故AD=AE+ED=AB+AC,得证.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.