当前位置: > 初等数论同余问题...
题目
初等数论同余问题
p为质数,0<a<p,证明x≡b×(-1)∧(a-1)×(p-1)···(p-a+1)/a!(mod p)是 同余式 ax≡b (mod p)的解

提问时间:2021-04-16

答案
题:p为质数,0<a<p,证:x≡b*(-1)^(a-1)*(p-1)*...*(p-a+1)/a!(mod p)是同余式 ax≡b (mod p)的解
证:
以下≡为便于打字也记成==
将x≡b*(-1)^(a-1)*(p-1)*...*(p-a+1)/a!代入ax mod p中得:
ax=b*(-1)^(a-1)*(p-1)*...*(p-a+1)/(a-1)!
=b*(1-p)*...*(a-1-p)/(a-1)!mod p
==b*1*...*(a-1)/(a-1)!
=b
得证.
备忘:下面的内容与上题的证明无关.
由wilson定理,(p-1)!==-1 mod p
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.