当前位置: > lim x->0 ,sin(1/x) 的极限?lim x->0 ,x*( sin(1/x) ) 的极限?...
题目
lim x->0 ,sin(1/x) 的极限?lim x->0 ,x*( sin(1/x) ) 的极限?

提问时间:2021-04-16

答案
第一个无极限
第二个为0
第一个lim x->0 sin(1/x) = lim t->无穷 sin(t)
若极限存在为a不等于0,即当t>t0之后sin(t)=a,则sin(t+pi)=-a 不等于a,所以极限不存在
若极限为0,取t=t0+pi/2,sin(t)=1,所以a不为零
第二个因为|sin(1/x)|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.