当前位置: > 一个凸多边形的一个内角的补角与其它内角的和是500°,那么这个多边形的边数有_条....
题目
一个凸多边形的一个内角的补角与其它内角的和是500°,那么这个多边形的边数有______条.

提问时间:2021-04-15

答案
设边数为n,这个内角为x度,则0<x<180°根据题意,得
(n-2)•180°-x+(180°-x)=500°
解得n=3+
140°+2x
180°

∵n为正整数,
∴140+2x必为180的倍数,
又∵0<x<180,
∴n=4或5.
故答案为:4或5.
本题涉及多边形的内角和、方程的思想.关键是记住内角和的公式,还需要懂得挖掘此题隐含着边数为正整数这个条件.

多边形内角与外角.

本题考查了多边形的内角和公式和补角的定义.此题较难,考查比较新颖,涉及到整式方程,不等式的应用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.