题目
如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5=______.第n次操作得到△AnBnCn,则△AnBnCn的面积Sn=______.
提问时间:2021-04-10
提问时间:2021-04-10
答案
连接A1C;
S△AA1C=3S△ABC=3,
S△AA1C1=2S△AA1C=6,
所以S△A1B1C1=6×3+1=19;
同理得S△A2B2C2=19×19=361;
S△A3B3C3=361×19=6859,
S△A4B4C4=6859×19=130321,
S△A5B5C5=130321×19=2476099,
从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n次后,得到△AnBnCn,
则其面积Sn=19n•S1=19n
故答案是:2476099;19n.
S△AA1C=3S△ABC=3,
S△AA1C1=2S△AA1C=6,
所以S△A1B1C1=6×3+1=19;
同理得S△A2B2C2=19×19=361;
S△A3B3C3=361×19=6859,
S△A4B4C4=6859×19=130321,
S△A5B5C5=130321×19=2476099,
从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n次后,得到△AnBnCn,
则其面积Sn=19n•S1=19n
故答案是:2476099;19n.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1如图,沿水库拦水坝的背水坡将坝顶加宽2米,坡度由原来的1:2改成1:2.5.已知坝高6米,坝长50米. (1)求加宽部分横断面AFEB的面积; (2)完成这一工程需要多少方土?
- 2英语短文 关于中国和美国文化差异的 大概可以说2分钟的 急用啊
- 3请问一下铝与硫酸铜的反应方程式.
- 4结合语境解释下列句子括号中的成语
- 5-(-3a-2b+2c)-{-a+[4a-(a-b-c)-3a]+2c}
- 6She is no longer the girl she was before she went to the countryside.
- 7(2M-N)X²+3X-2(MX²-NX+6)的取值与X的取值无关 求M,N
- 8分解因式 a^3(x+y)^2-4a^3c^2
- 9根据上下文补充句子 hello,this is amy.hi!amy,( ) i am listening to the weather report.
- 10大熊猫的存活率为什么很低
热门考点