题目
设f(x)=x^2+bx+c(b,c属于实数),若x的绝对值大于等于2时,f(x)大于等于0,且f(x)在区间(2,3]上的最
设f(x)=x^2+bx+c(b,c属于实数),若x的绝对值大于等于2时,f(x)大于等于0,且f(x)在区间(2,3]上的最大值为1,求b^2+c^2的最大值和最小值.
设f(x)=x^2+bx+c(b,c属于实数),若x的绝对值大于等于2时,f(x)大于等于0,且f(x)在区间(2,3]上的最大值为1,求b^2+c^2的最大值和最小值.
提问时间:2021-04-09
答案
∵f(x)=x^2+bx+c∴开口向上
∵x的绝对值大于等于2
∴x≥2或者x≤-2
∵x的绝对值大于等于2时,f(x)大于等于0,
∴4+2b+c≥0 4-2b+c≥0
∵f(x)在区间(2,3]上的最大值为1
∴9+3b+c=1∴c=-8-3b
∴4+2b-8-3b≥0 4-2b-8-3b≥0∴b≤-4
∴b²+c²=10b²+48b+64,抛物线开口向上,对称轴b=-2.4∴b≤-4,单调递减
∴b²+c²只有最小值为b=-4时,b²+c²=160-192+64=32;;没有最大值.
∵x的绝对值大于等于2
∴x≥2或者x≤-2
∵x的绝对值大于等于2时,f(x)大于等于0,
∴4+2b+c≥0 4-2b+c≥0
∵f(x)在区间(2,3]上的最大值为1
∴9+3b+c=1∴c=-8-3b
∴4+2b-8-3b≥0 4-2b-8-3b≥0∴b≤-4
∴b²+c²=10b²+48b+64,抛物线开口向上,对称轴b=-2.4∴b≤-4,单调递减
∴b²+c²只有最小值为b=-4时,b²+c²=160-192+64=32;;没有最大值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1将10.6克碳酸钠固体溶于水配成50mL溶液,其物质的量浓度为?
- 2已知(1+tanx)/(1-tanx)=3+2倍的根号2,求sinxcosx和sinx(sinx-3cosx)的值
- 31/12X-6/15×5/9=3/4 x-75%=1/4 1-25%X=3/8
- 4求速度公式、位移公式、速度-位移公式的变形
- 5和生物有关的成语,俗语,谚语
- 6根据中文完成句子.这座山比那座山高得多.This mountain is ___ ___ ___ than that one.
- 7had written,was written,is written,have written有什么差别?
- 8关于四年级下的填空题有那些?
- 9怎样提高综合填空的成绩
- 10小学英语作文“My math teacher”至少5句话.