当前位置: > 设f(x)=x^2+bx+c(b,c属于R),若|x|≥2时f(x)≥0,且f(x)在区间(2,3]上的最大值为1,...
题目
设f(x)=x^2+bx+c(b,c属于R),若|x|≥2时f(x)≥0,且f(x)在区间(2,3]上的最大值为1,
(1)求f(3)的值
(2)若f(x)=x^2+bx+c不存在零点,求b的范围,并求b^2+c^2的最大值
(3)若f(x)=x^2+bx+c存在零点,求b的值

提问时间:2021-04-09

答案
(1)抛物线函数f(x)=x^2+bx+c开口向上,离开中心对称轴越远函数值越大,因此当|x|≥2若f(x)≥0,那么区间(2,3]上函数最大值即f(3),所以f(3)=1;
(2)f(x)=x^2+bx+c不存在零点,则b^2-4c<0;
由f(3)=1得:3^2+b*3+c=1,c=-3b-8;代入上式:
b^2-4(-3b-8)<0,b^2+12b+32<0;解得:-8(3)若f(x)=x^2+bx+c存在零点,b取值范围与(2)相反,即b≤-8或b≥-4;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.