当前位置: > Wallis公式的推导~...
题目
Wallis公式的推导~
从π/2 = lim(n→∞)[ (2n)!/ (2n-1)!]^2 / (2n+1) 是怎么到=lim(n→∞)[ (2n)!* (2n)!/ (2n)!]^2 / (2n+1) .
关键是(2n)!

提问时间:2021-04-09

答案
!是双阶乘:
当n为奇数时表示不大于n的所有奇数的乘积 如:7!=1×3×5×7
当n为偶数时表示不大于n的所有偶数的乘积 如:8!=2×4×6×8
根据这个上面的公式就很好理解了
1/(2n-1)!= (2n)!/ (2n)!
也就是(2n-1)!= (2n)!/(2n)!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.