题目
关于反常积分的瑕点问题
举例说:f(x)=1/x,求该函数在区间【-1,1】内的积分.答:可以明显看出为0啊,因为对称性嘛.
不过高数书(同济五254页)上黑字部分的意思是:这是一个无界函数的反常积分,x=0是函数的瑕点,此为暇积分,∵∫1/xdx在(0,1)积分时,=ln1-ln0+,而ln0+=正无穷,故此反常积分发散!故在(-1,1)的积分不存在,或者叫积分发散. 是不是如果不考虑0这个瑕点,就会得出开始所说的错误的结果啊?
求解释.
举例说:f(x)=1/x,求该函数在区间【-1,1】内的积分.答:可以明显看出为0啊,因为对称性嘛.
不过高数书(同济五254页)上黑字部分的意思是:这是一个无界函数的反常积分,x=0是函数的瑕点,此为暇积分,∵∫1/xdx在(0,1)积分时,=ln1-ln0+,而ln0+=正无穷,故此反常积分发散!故在(-1,1)的积分不存在,或者叫积分发散. 是不是如果不考虑0这个瑕点,就会得出开始所说的错误的结果啊?
求解释.
提问时间:2021-04-08
答案
书说的是对的,你的理解有问题哦~
你认为这样有对称性的积分值为0,这有一个前提:积分是存在的(即收敛的).而这个积分是不收敛的瑕积分,所以不存在(不收敛).计算积分值的前提是积分存在!
直观上怎么理解呢?你说的“对称”的意思是(-1,0)与(0,1)两部分的积分正负抵消,这固然有道理,但注意这两部分每一部分的积分都是发散的!相当于a-a=0总是对的,但+∞-+∞等于0吗?不能这样说吧……
另外,flytian0103的解释是错误的.瑕积分这个概念本身就是为了处理函数在某点无定义的情形,所以不能仅从函数无定义断言瑕积分发散.比如f(x)=1/根号x,它在0点也没有定义,但它在-1~0和0~1的瑕积分都是收敛的!
你认为这样有对称性的积分值为0,这有一个前提:积分是存在的(即收敛的).而这个积分是不收敛的瑕积分,所以不存在(不收敛).计算积分值的前提是积分存在!
直观上怎么理解呢?你说的“对称”的意思是(-1,0)与(0,1)两部分的积分正负抵消,这固然有道理,但注意这两部分每一部分的积分都是发散的!相当于a-a=0总是对的,但+∞-+∞等于0吗?不能这样说吧……
另外,flytian0103的解释是错误的.瑕积分这个概念本身就是为了处理函数在某点无定义的情形,所以不能仅从函数无定义断言瑕积分发散.比如f(x)=1/根号x,它在0点也没有定义,但它在-1~0和0~1的瑕积分都是收敛的!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1AB两车同时向东、西相向开出,AB两车的速度比是8:7:两车相遇后,B车每小时比原来多行15千米,结果两车恰
- 2首字母填空
- 3已知直角三角形的三边分别是a,a+b,a+2b(其中a>0,b>0),求a与b的比
- 4作文 我写给青藏铁路建设者的话
- 5请以“我的目标,我的追求”为题,写一篇不少于600自的文章,文体不限(除诗歌外,是一篇初一作文)
- 6在催化剂的作用下,使CO和NO发生化学反应,生成一种单质.其中单质是N2,催化剂是什么?
- 7有一个圆柱形储粮桶,容积是3.14立方米,桶深2米,把这个桶装满稻谷后再在上面把稻谷堆成一个高0.3米的圆锥.这个储粮桶装的稻谷体积是多少立方米?(保留两位小数)
- 8已知△ABC的顶点A(2,-4),两条内角平分线的方程分别是BE:x+y-2=0和CF:x-2y-6=0,求△ABC的三边所在的直线方程.
- 9把一个玻璃球浸没入一个盛水的量筒里,水位上升了6立方厘米.你知道玻璃球的体积吗
- 10Its your coat.Put on it.
热门考点