题目
多元微分
1、(x,y,z)≠(0,0,0)时,f(x,y,z)=(x+y+z)^r/x^2+y^2+z^2;
(x,y,z)=(0,0,0)时,f(x,y,z)=0
求r的值,使函数连续
2、已知f是可导的一元函数,求证,所有和 z = x*xf(y/x) 相切的平面交于一点.
1、(x,y,z)≠(0,0,0)时,f(x,y,z)=(x+y+z)^r/x^2+y^2+z^2;
(x,y,z)=(0,0,0)时,f(x,y,z)=0
求r的值,使函数连续
2、已知f是可导的一元函数,求证,所有和 z = x*xf(y/x) 相切的平面交于一点.
提问时间:2021-04-08
答案
第一题的除号后面是不是应该有个括号?如果是,答案应该是r > 2
第二题,过曲面上的点(x,y,z)的切平面的法线是(f(y/x)-y/x * f(y/x),f'(y/x),-1)
所以切平面方程是:
(f(y/x)-y/x * f(y/x))(u - x) + f'(y/x)(v - y) - (w - z) = 0
对于任意的x,y,z,这个切平面都过点(0,0,0)
第二题,过曲面上的点(x,y,z)的切平面的法线是(f(y/x)-y/x * f(y/x),f'(y/x),-1)
所以切平面方程是:
(f(y/x)-y/x * f(y/x))(u - x) + f'(y/x)(v - y) - (w - z) = 0
对于任意的x,y,z,这个切平面都过点(0,0,0)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点