题目
如图,已知矩形ABCD中,AB=12cm,BC=6cm,点P沿BA边从点B开始向终点A以2cm/s的速度移动.点Q从点D开始沿DC边向终点C以2cm/s的速度移动,设PQ与AC的交点O,如果P、Q两点同时出发,移动的时间为xs(0<x<6).当x为何值时,△OAP与△ABC相似?
提问时间:2021-04-07
答案
分析:(1)只要把QA、AP用含t的代数式表示,利用QA=AP求解;(2)可以分别求出△QAC和△APC的面积;(3)同例4一样,要分两种情况求解.
(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得t=2(秒).
所以当t=2秒时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC= QA•DC= (6-t)•12=36-6t.
∵在△APC中,AP=2t,BC=6,
∴S△APC= AP•BC= •2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=36-6t+6t=36(cm 2).
由计算结果发现:在P、Q两点的移动过程中,四边形QAPC的面积始终保持不变.(也可以提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来求
当 时,△QAP∽△ABC.
∴ .
解得t=1.2(s).
∴当t=1.2 s时,△QAP∽△ABC.
当 时,△PAQ∽△ABC.
∴ .
解得t=3(秒).
∴当t=3 s时,△PAQ∽△ABC.
(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得t=2(秒).
所以当t=2秒时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC= QA•DC= (6-t)•12=36-6t.
∵在△APC中,AP=2t,BC=6,
∴S△APC= AP•BC= •2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=36-6t+6t=36(cm 2).
由计算结果发现:在P、Q两点的移动过程中,四边形QAPC的面积始终保持不变.(也可以提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来求
当 时,△QAP∽△ABC.
∴ .
解得t=1.2(s).
∴当t=1.2 s时,△QAP∽△ABC.
当 时,△PAQ∽△ABC.
∴ .
解得t=3(秒).
∴当t=3 s时,△PAQ∽△ABC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1how abouth going with us 同义句转换___ ___ go with us
- 2Adobe Creative cloud翻译.
- 3Can you show me the(首字母是e)to the park?
- 4It takes me about half an hour____to the bus stop.A get B,to get C,getting D
- 5某高中一年级有团员128人,不是团员有42人,一年后不是团员人数是团员1/9,求这一年有几个同学入团?
- 6A交B等于C A交(B的补集)等于D,A等于C并D,这个怎么证明,有什么条件?
- 7已知关于x的一元二次方程x的平方+7X+11ˉm=0有实数根 求m的取值范围 2 当m为
- 8照相时物体在距照相机二倍焦距以内会怎么样?
- 9有硝酸钾溶液一份,若蒸发40G水,再回到原来温度,恰好饱和,若+12G硝酸钾,搅拌后,仍有4G不溶解,则KNO3的溶解度 答案是20G/100G水 过程
- 10今天的运河和隋朝大运河和有什么区别?
热门考点