当前位置: > 用数学归纳法证明(3n+1)*7^n-1(n属于正整数)能被9整除...
题目
用数学归纳法证明(3n+1)*7^n-1(n属于正整数)能被9整除

提问时间:2021-04-07

答案
首先,n=1时,原式=27能被9整除.
设n=k时,原式能被9整除,即原式=(3k+1)*7^k-1=9m(m为整数)
当n=k+1时,原式=(3k+4)*7^(k+1)-1
=(3k+1)*7^(k+1)+3*7^(k+1)-1
=(9m+1)*7+3*7^(k+1)-1
=63m+3*[7^(k+1)+2]
=63m+3*[(6+1)^(k+1)+2]
显然,(6+1)^(k+1)进行二项式展开只有1^(k+1)这项不能被3整除,因此(6+1)^(k+1)除3余1,故(6+1)^(k+1)+2可以被3整除,所以当n=k+1原式可以被9整除.
所以当n为正整数时,结论成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.