当前位置: > 对于函数f(x)=2013asinx+2014bx+c(其中a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是(  ) A.4和6 B.3和1 C.2和...
题目
对于函数f(x)=2013asinx+2014bx+c(其中a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是(  )
A. 4和6
B. 3和1
C. 2和4
D. 1和2

提问时间:2021-04-07

答案
f(x)=2013asinx+2014bx+c
f(1)=2013asin1+2014b+c,f(-1)=-2013asin1-2014b+c
f(1)+f(-1)=2c,即c=
f(1)+f(−1)
2

因为C为整数,而选项A、B、C、D中两个数之和除以2不为整数的是选项D
所以正确结果一定不可能的为D.
故选D.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.