题目
在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求证:BF∥平面AD1E;
(2)求证:D1E⊥平面AEC.
(1)求证:BF∥平面AD1E;
(2)求证:D1E⊥平面AEC.
提问时间:2021-04-07
答案
证明:(1)取DD1的中点G,连接GB,GF.∵E、F分别是棱BB1、DA的中点,
∴GF∥AD1,BE∥D1G且BE=D1G,∴四边形BED1G为平行四边形,∴BG∥D1E.
又D1E、D1A⊂平面AD1E,BG、GF⊄平面AD1E,∴BG∥平面AD1E,GF∥平面AD1E.
∵BG、GF⊂平面BGF,且BG∩GF=G,∴平面BGF∥平面AD1E.
∵BF⊂平面BGF,∴BF∥平面AD1E.
(2)∵AA1=2,A1D1=1,∴AD1=
=
.
同理可得:AE=
,D1E=
.∵A
=D1E2+AE2 ,∴D1E⊥AE.
同理可证得D1E⊥CE.
又AE∩CE=E,AE⊂平面AEC,CE⊂平面AEC,∴D1E⊥平面AEC.
∴GF∥AD1,BE∥D1G且BE=D1G,∴四边形BED1G为平行四边形,∴BG∥D1E.
又D1E、D1A⊂平面AD1E,BG、GF⊄平面AD1E,∴BG∥平面AD1E,GF∥平面AD1E.
∵BG、GF⊂平面BGF,且BG∩GF=G,∴平面BGF∥平面AD1E.
∵BF⊂平面BGF,∴BF∥平面AD1E.
(2)∵AA1=2,A1D1=1,∴AD1=
A
|
5 |
同理可得:AE=
2 |
3 |
D | 2 1 |
同理可证得D1E⊥CE.
又AE∩CE=E,AE⊂平面AEC,CE⊂平面AEC,∴D1E⊥平面AEC.
(1)取DD1的中点G,连接GB,GF.根据已知中E、F分别是棱B1B、DA的中点,我们易证明四边形BED1G为平行四边形,则BG∥D1E,根据线面平行的判定定理可得BG∥平面AD1E,进而根据面面平行的判定定理得到平面BGF∥平面AD1E,最后由面面平行的性质得到BF∥平面AD1E;
(2)由已知中AA1=2,底面是边长为1的正方形,根据勾股定理,我们可以求出D1E⊥AE,D1E⊥CE,结合线面垂直的判定定理即可得到D1E⊥平面AEC.
(2)由已知中AA1=2,底面是边长为1的正方形,根据勾股定理,我们可以求出D1E⊥AE,D1E⊥CE,结合线面垂直的判定定理即可得到D1E⊥平面AEC.
直线与平面垂直的判定;直线与平面平行的判定.
本题考查的知识点是直线与平面垂直的判定,直线与平面平行的判定,(1)中的关键是证明平面BGF∥平面AD1E,(2)中的关键是证明D1E⊥AE,1E⊥CE.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1一天什么时候紫外线最强啊,天热紫外线就强么
- 2什么船儿上月球?什么船儿海底游?什么船儿水面飞?什么船儿冰上走?
- 3They often go swimming in this river in()summer
- 4Whose mobile phone is this?(I forget.)改为宾语从句
- 5There is a bank a___ from the streer.
- 611.25-(7.25+3.80)
- 7草原 老舍 为什么写草原
- 8英语翻译
- 94x-15y-17=0 (1) 6x-25y-23=0 (2) 请问这道方程组怎么解?要详细过程
- 10请运用下面提供的词语,写一段描写雪的文字.70字左右.旋转 腾飞 纷纷扬扬 粉妆玉砌
热门考点