当前位置: > 线性代数 证明方阵可逆...
题目
线性代数 证明方阵可逆
已知方阵A B满足AB=I,证明A可逆.不能使用可逆矩阵定理(IMT).

提问时间:2021-04-06

答案
证明:
因为AB=E,则B是方程组AX=E的解.
所以r(A)=r(A|E)=r(E).
由于A和E同尺寸,所以A满秩.即可逆.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.