当前位置: > 设f(x)在[0,1]上连续,且f(0)=0,f(1)=1,证明至少存在一点ξ属于(0,1),使f(ξ)=1-ξ...
题目
设f(x)在[0,1]上连续,且f(0)=0,f(1)=1,证明至少存在一点ξ属于(0,1),使f(ξ)=1-ξ

提问时间:2021-04-06

答案
设g(x)=f(x)-(1-x)
则g(0)=-1,g(1)=1,且g(x)在【0,1】上连续,所以存在一点ξ属于(0,1),使g(ξ)=0,即
f(ξ)-(1-ξ)=0,所以
f(ξ)=1-ξ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.